The Hoffman–Rossi Theorem for Operator Algebras
نویسندگان
چکیده
منابع مشابه
A Morita Theorem for Dual Operator Algebras
We prove that two dual operator algebras are weak Morita equivalent in the sense of [4] if and only if they have equivalent categories of dual operator modules via completely contractive functors which are also weakcontinuous on appropriate morphism spaces. Moreover, in a fashion similar to the operator algebra case we can characterize such functors as the module normal Haagerup tensor product ...
متن کاملEgoroff Theorem for Operator-Valued Measures in Locally Convex Cones
In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...
متن کاملOperator Algebras
Notice that the left-hand side of the third equation is the sum of the left-hand sides of the first two. As a result, no solution to the system exists unless a + b = c. But if a + b = c, then any solution of the first two equations is also a solution of the third; and in any linear system involving more unknowns than equations, solutions, when they exist, are never unique. In the present case, ...
متن کاملOperator Algebras for Analytic Varieties
We study the isomorphism problem for the multiplier algebras of irreducible complete Pick kernels. These are precisely the restrictionsMV of the multiplier algebraM of Drury-Arveson space to a holomorphic subvariety V of the unit ball. We find thatMV is completely isometrically isomorphic toMW if and only if W is the image of V under a biholomorphic automorphism of the ball. In this case, the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Integral Equations and Operator Theory
سال: 2019
ISSN: 0378-620X,1420-8989
DOI: 10.1007/s00020-019-2521-7